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LElTER TO THE EDITOR 

On the field-dependence of eigenvalues of correlation function 
matrices H and C in the fluctuating interface of the 
two-dimensional SOS model 

J SteckitS and J DudowiczS 
t Physical Chemistry Laboratory, Oxford, South Parks Road, UK 
t Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Kasprzaka 48/52, 
Poland 

Received 6 February 1984 

Abstract. The density-density correlation function matrix H ( z , ,  2,;  x) and its Fourier 
transform f?(z,, z , ;  k )  in the interface of a lattice gas in the solid-on-solid (SOS) approxima- 
tion were computed numerically with the aid of the tran_sfer matrix. Strips z,,, xco were 
studied in a weak external field. The matrices H and H were diagonalised for _small k ,  
and for k _  = 0. As postulated by Wertheim, the largest (single) eigenvalue of H ( k ,  = 0) 
was well separated from the others, but its field dependence was represented by A H 1  = 
A(PV,,)& with S = 0.75 or S = 1 for a = 2 or a = 1 respectively, with a specifying the power 
law of the external field. 

The structure of the fluctuating interface between two fluid phases in a gravitational 
field is conventionally described by the density profile p ( z )  and by the two-point 
density-density correlation function H( 1,2) = (6p(  1) 642) ) .  H contains the long-range 
transverse correlations and the universal form representing the ‘capillary wave’ contri- 
bution is 

f i ( z1 ,  z2; k , )  = f i ( %  z2; k ,  = 0). pmg A p / ( P m g  Ap +PYk: )  

fi(O)= f i ( z i ,  z 2 ;  k ,  = 0) = p’ ( z , )p ’ ( z , ) / pmg  Ap 

kL+O ( l a )  

( l b )  
with the external potential p V ( z )  = p m g ( z  - zo), A p  = pgas - plis, p = 1/ kT, y being the 
surface tension and k ,  the transverse Fourier variable (Rowlinson and Widom 1982, 
Evans 1979 (especially appendix 2), Croxton 1980, Davis and Scriven 1982). The long 
range of H ( x )  becomes infinite in the limit of p m g + 0 .  These results follow from a 
one-eigenvalue approximation to f i .  

Having computed numerically for a certain model, the matrices f i ( k )  and their 
inverses e ( k )  (Stecki 1984, Dudowicz and Stecki 1980) we can test the ansatz proposed 
by Wertheim (1976) and discussed by Evans (1979). Wertheim found that p ‘ ( z )  is an 
eigenfunction of C(k, = 0) with an eigenvalue zero if pmg = 0 and postulated that this 
smallest eigenvalue of C, ho(k, p m g )  goes to zero linearly, i.e. A,-(0, p m g )  = 
pmgv, pmg  + 0, v finite. 

We studied the SOS model in two dimensions which replaces the interface by an 
array of columns of liquid (pL = 1) of variable height hi, in contact with vacuum (pG = 0). 
The matrices H and C are readily computed (Stecki 1984) with the aid of the transfer 
matrix for non-zero external (pinning) potential V ( h i )  = Volhi - holm (van Leeuwen and 

p ’ ( z )  = dp/dz 
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Hilhorst 198 1). We studied the case CY = 2 which corresponds to a gravitational potential 
and the case a = 1 which corresponds to constant shift, in the chemical potential, of 
opposite signs below and above the Gibbs dividing surface. For a strip zmax=w, H 
(or C )  is a matrix of dimensions zmaX x z,,, and its eigenvalues were computed for 
z,,, = 1 1-6 1 and a range of external fields 2 x 1 0-5 S p V, S 0.3 and temperatures T /  T, = 
0.3, 0.5, 0.7 where 2J/  kT, = In(1 +h) = 0.881 37. The partition function of the system 
is 

0 s h, s zmax. (2) 

The transfer matrix was diagonalised numerically, all its eigenvalues and eigenvectors 
were found and the Fourier sum f i ( k )  was hence computed. All eigenvalues of 
6 ( k 1  = 0) matrix were then found. Figure 1 shows the log-log plot of Ac  = A H  against 
p,Vo=0.881 37V0/2J. The plot of figure 1 was obtained by extrapolating each hc to 
larger and larger values of z,,, until it remained constant (except for the very small 
fields (pcV0< 2 x to five digit accuracy). Such extrapolation becomes more and 
more difficult as the temperature is raised. 
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Figure 1. The log-log plot of the eigenvalue h,-(k, = 0) against external field P,V, for 
temperatures T/ T,=0.3(+), 0.5(0),  0.7(A). Here a = 2 corresponds to the gravitational 
field, and e = 1 corresponds to constant shift in chemical potential. 
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The linear plots of figure 1 correspond to the following relation 

Ac = A( V ( P C  Val8. (3) 

We found the amplitudes and the exponents by extrapolation illustrated by figure 2. 
Each 6 in figure 2 was obtained from a pair of successive points in figure 1. For the 
gravitational potential a = 2, S = f in the limit of vanishing external field. The exponent 
6 = 1 postulated by Wertheim is recovered in the case a = 1. The amplitudes are: 
A = 3.50*0.01,3.50*0.06 for T /  T, = 0.3,0.5, respectively, for a = 2 and A = 
18.7 * 0.1, 1 1.25 * 0.1 for T /  T, = 0.3,0.5, respectively, for a = 1 .  The amplitude could 
be determined for T /  T, = 0.7 if larger strips were investigated. 

0.0020 

Figure 2. The exponents 6 computed as successive ratios from figure I for a = 2 and a = 1. 
The numbers 49, 55, 61 denote z,,, for a = 1, T=0.5TC.  For z,,, =61 the proper value 
of A c  is not yet reached. 

It is worth pointing out that the result (3) does not necessarily destroy the forms 
(1 a )  and (1 b). Assuming and introducing the one-eigenvalue approximation to H, we 
find (now in continuous space, Evans 1979) 

fi = xl(zl)A-’(Pcvo)-Sxl(z2) 
~ ‘ ( z I )  = -A-l(P,Vo)l-s~l(~l)E 

A p  = A-’(P, V0)l-’E2 

E dz, xI(zI) I 
but 

fi = P’(zl)P’(zz)(” Ap1-I ( lb)  

is recovered because 6 cancels out. The k2 dependence in (1 a)  is confirmed as expected 
but the coefficient approaches Pr with difficulty. 
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