

Home Search Collections Journals About Contact us My IOPscience

On the field-dependence of eigenvalues of correlation function matrices H and C in the fluctuating interface of the two-dimensional SOS model

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1984 J. Phys. A: Math. Gen. 17 L447 (http://iopscience.iop.org/0305-4470/17/8/011)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 08:34

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the field-dependence of eigenvalues of correlation function matrices H and C in the fluctuating interface of the two-dimensional sos model

J Stecki[†][‡] and J Dudowicz[‡]

[†] Physical Chemistry Laboratory, Oxford, South Parks Road, UK
 [‡] Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Kasprzaka 48/52, Poland

Received 6 February 1984

Abstract. The density-density correlation function matrix $H(z_1, z_2; x)$ and its Fourier transform $\tilde{H}(z_1, z_2; k)$ in the interface of a lattice gas in the solid-on-solid (sos) approximation were computed numerically with the aid of the transfer matrix. Strips $z_{\max} \times \infty$ were studied in a weak external field. The matrices H and \tilde{H} were diagonalised for small k_{\perp} and for $k_{\perp} = 0$. As postulated by Wertheim, the largest (single) eigenvalue of $\tilde{H}(k_{\perp} = 0)$ was well separated from the others, but its field dependence was represented by $\lambda_{H}^{-1} = A(\beta V_0)^{\delta}$ with $\delta = 0.75$ or $\delta = 1$ for $\alpha = 2$ or $\alpha = 1$ respectively, with α specifying the power law of the external field.

The structure of the fluctuating interface between two fluid phases in a gravitational field is conventionally described by the density profile $\rho(z)$ and by the two-point density-density correlation function $H(1, 2) = \langle \delta \rho(1) \delta \rho(2) \rangle$. H contains the long-range transverse correlations and the universal form representing the 'capillary wave' contribution is

$$\tilde{H}(z_1, z_2; k_\perp) = \tilde{H}(z_1, z_2; k_\perp = 0) \cdot \beta mg \,\Delta \rho / (\beta mg \,\Delta \rho + \beta \gamma k_\perp^2) \qquad k_\perp \to 0 \tag{1a}$$

$$\tilde{H}(0) = \tilde{H}(z_1, z_2; k_{\perp} = 0) = \rho'(z_1)\rho'(z_2)/\beta mg \,\Delta\rho \qquad \rho'(z) = d\rho/dz \tag{1b}$$

with the external potential $\beta V(z) = \beta mg(z - z_0)$, $\Delta \rho = \rho_{gas} - \rho_{liq}$, $\beta = 1/kT$, γ being the surface tension and k_{\perp} the transverse Fourier variable (Rowlinson and Widom 1982, Evans 1979 (especially appendix 2), Croxton 1980, Davis and Scriven 1982). The long range of H(x) becomes infinite in the limit of $\beta mg \rightarrow 0$. These results follow from a one-eigenvalue approximation to \tilde{H} .

Having computed numerically for a certain model, the matrices $\tilde{H}(k)$ and their inverses $\tilde{C}(k)$ (Stecki 1984, Dudowicz and Stecki 1980) we can test the ansatz proposed by Wertheim (1976) and discussed by Evans (1979). Wertheim found that $\rho'(z)$ is an eigenfunction of $C(k_{\perp} = 0)$ with an eigenvalue zero if $\beta mg = 0$ and postulated that this smallest eigenvalue of $C, \lambda_0(k, \beta mg)$ goes to zero linearly, i.e. $\lambda_C(0, \beta mg) = \beta mg\nu, \beta mg \rightarrow 0, \nu$ finite.

We studied the sos model in two dimensions which replaces the interface by an array of columns of liquid ($\rho_L = 1$) of variable height h_i in contact with vacuum ($\rho_G = 0$). The matrices H and C are readily computed (Stecki 1984) with the aid of the transfer matrix for non-zero external (pinning) potential $V(h_i) = V_0 |h_i - h_0|^{\alpha}$ (van Leeuwen and

Hilhorst 1981). We studied the case $\alpha = 2$ which corresponds to a gravitational potential and the case $\alpha = 1$ which corresponds to constant shift, in the chemical potential, of opposite signs below and above the Gibbs dividing surface. For a strip $z_{max} = \infty$, H(or C) is a matrix of dimensions $z_{max} \times z_{max}$ and its eigenvalues were computed for $z_{max} = 11-61$ and a range of external fields $2 \times 10^{-5} \le \beta V_0 \le 0.3$ and temperatures $T/T_c =$ 0.3, 0.5, 0.7 where $2J/kT_c = \ln(1 + \sqrt{2}) = 0.881$ 37. The partition function of the system is

$$Z = \sum_{\{h_i\}} \exp\left(-2\beta J \sum_i |h_{i+1} - h_i|\right) \exp\left(\beta V_0 \sum_i |h_i - h_0|^{\alpha}\right), \qquad \alpha = 1, 2$$
$$0 \le h_i \le z_{\max}.$$
 (2)

The transfer matrix was diagonalised numerically, all its eigenvalues and eigenvectors were found and the Fourier sum $\tilde{H}(k)$ was hence computed. All eigenvalues of $\tilde{H}(k_{\perp}=0)$ matrix were then found. Figure 1 shows the log-log plot of $\lambda_{\rm C} = \lambda_{\rm H}$ against $\beta_{\rm c}V_0 = 0.881 \ 37 \ V_0/2J$. The plot of figure 1 was obtained by extrapolating each $\lambda_{\rm C}$ to larger and larger values of $z_{\rm max}$ until it remained constant (except for the very small fields ($\beta_{\rm c}V_0 < 2 \times 10^{-4}$), to five digit accuracy). Such extrapolation becomes more and more difficult as the temperature is raised.

Figure 1. The log-log plot of the eigenvalue $\lambda_c(k_\perp = 0)$ against external field $\beta_c V_0$ for temperatures $T/T_c = 0.3(+)$, $0.5(\bigcirc)$, $0.7(\triangle)$. Here $\alpha = 2$ corresponds to the gravitational field, and $\alpha = 1$ corresponds to constant shift in chemical potential.

The linear plots of figure 1 correspond to the following relation

$$\lambda_C = A(T)(\beta_c V_0)^{\delta}.$$
(3)

We found the amplitudes and the exponents by extrapolation illustrated by figure 2. Each δ in figure 2 was obtained from a pair of successive points in figure 1. For the gravitational potential $\alpha = 2$, $\delta = \frac{3}{4}$ in the limit of vanishing external field. The exponent $\delta = 1$ postulated by Wertheim is recovered in the case $\alpha = 1$. The amplitudes are: $A = 3.50 \pm 0.01, 3.50 \pm 0.06$ for $T/T_c = 0.3, 0.5$, respectively, for $\alpha = 2$ and $A = 18.7 \pm 0.1, 11.25 \pm 0.1$ for $T/T_c = 0.3, 0.5$, respectively, for $\alpha = 1$. The amplitude could be determined for $T/T_c = 0.7$ if larger strips were investigated.

Figure 2. The exponents δ computed as successive ratios from figure 1 for $\alpha = 2$ and $\alpha = 1$. The numbers 49, 55, 61 denote z_{max} for $\alpha = 1$, $T = 0.5 T_c$. For $z_{max} = 61$ the proper value of λ_c is not yet reached.

It is worth pointing out that the result (3) does not necessarily destroy the forms (1a) and (1b). Assuming and introducing the one-eigenvalue approximation to H, we find (now in continuous space, Evans 1979)

$$\begin{split} \tilde{H} &= x_1(z_1) A^{-1} (\beta_c V_0)^{-\delta} x_1(z_2) \\ \rho'(z_1) &= -A^{-1} (\beta_c V_0)^{1-\delta} x_1(z_1) E \\ \Delta \rho &= A^{-1} (\beta_c V_0)^{1-\delta} E^2 \\ E &= \int dz_1 x_1(z_1) \end{split}$$

but

$$\tilde{H} = \rho'(z_1)\rho'(z_2)(\beta mg \,\Delta \rho)^{-1} \tag{1b}$$

is recovered because δ cancels out. The k^2 dependence in (1a) is confirmed as expected but the coefficient approaches $\beta\gamma$ with difficulty. One of us (JS) would like to thank Professor J S Rowlinson and Dr J R Henderson for useful discussions

References

Croxton C A 1980 Statistical Mechanics of the Liquid Surface (Chichester: Willey) Davis H L and Scriven L E 1982 Adv. Chem. Phys. 49 357 Dudowicz J and Stecki J 1980 Presented at the First Statistical Physics Seminar (Warsaw) Evans R 1979 Adv. Phys. 28 143 Rowlinson J S and Widom B 1982 Molecular Theory of Capillarity (Oxford: Clarendon) Stecki J 1984 Proc. R. Soc. A in press Van Leeuwen J M J and Hilhorst H J 1981 Physica 107A 319 Wertheim M S 1976 J. Chem. Phys. 65 2377