On the field-dependence of eigenvalues of correlation function matrices H and C in the fluctuating interface of the two-dimensional SOS model

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1984 J. Phys. A: Math. Gen. 17 L447
(http://iopscience.iop.org/0305-4470/17/8/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 08:34

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the field-dependence of eigenvalues of correlation function matrices H and C in the fluctuating interface of the two-dimensional sos model

J Stecki $\ddagger \ddagger$ and J Dudowicz \ddagger
\dagger Physical Chemistry Laboratory, Oxford, South Parks Road, UK
\ddagger Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Kasprzaka 48/52, Poland

Received 6 February 1984

Abstract

The density-density correlation function matrix $H\left(z_{1}, z_{2} ; x\right)$ and its Fourier transform $\tilde{H}\left(z_{1}, z_{2} ; k\right)$ in the interface of a lattice gas in the solid-on-solid (sos) approximation were computed numerically with the aid of the transfer matrix. Strips $z_{\max } \times \infty$ were studied in a weak external field. The matrices H and \tilde{H} were diagonalised for small k_{\perp} and for $k_{-}=0$. As postulated by Wertheim, the largest (single) eigenvalue of $\dot{H}\left(k_{\perp}=0\right)$ was well separated from the others, but its field dependence was represented by $\lambda_{H}^{-1}=$ $A\left(\beta V_{0}\right)^{\delta}$ with $\delta=0.75$ or $\delta=1$ for $\alpha=2$ or $\alpha=1$ respectively, with α specifying the power law of the external field.

The structure of the fluctuating interface between two fluid phases in a gravitational field is conventionally described by the density profile $\rho(z)$ and by the two-point density-density correlation function $H(1,2)=\langle\delta \rho(1) \delta \rho(2)\rangle . H$ contains the long-range transverse correlations and the universal form representing the 'capillary wave' contribution is
$\tilde{H}\left(z_{1}, z_{2} ; k_{\perp}\right)=\tilde{H}\left(z_{1}, z_{2} ; k_{\perp}=0\right) \cdot \beta m g \Delta \rho /\left(\beta m g \Delta \rho+\beta \gamma k_{\perp}^{2}\right) \quad k_{\perp} \rightarrow 0$
$\tilde{H}(0) \equiv \tilde{H}\left(z_{1}, z_{2} ; k_{\perp}=0\right)=\rho^{\prime}\left(z_{1}\right) \rho^{\prime}\left(z_{2}\right) / \beta m g \Delta \rho \quad \rho^{\prime}(z)=\mathrm{d} \rho / \mathrm{d} z$
with the external potential $\beta V(z)=\beta m g\left(z-z_{0}\right), \Delta \rho=\rho_{\text {gas }}-\rho_{\mathrm{liq}}, \beta=1 / k T, \gamma$ being the surface tension and k_{\perp} the transverse Fourier variable (Rowlinson and Widom 1982, Evans 1979 (especially appendix 2), Croxton 1980, Davis and Scriven 1982). The long range of $H(x)$ becomes infinite in the limit of $\beta m g \rightarrow 0$. These results follow from a one-eigenvalue approximation to \tilde{H}.

Having computed numerically for a certain model, the matrices $\tilde{H}(k)$ and their inverses $\tilde{C}(k)$ (Stecki 1984, Dudowicz and Stecki 1980) we can test the ansatz proposed by Wertheim (1976) and discussed by Evans (1979). Wertheim found that $\rho^{\prime}(z)$ is an eigenfunction of $C\left(k_{\perp}=0\right)$ with an eigenvalue zero if $\beta m g=0$ and postulated that this smallest eigenvalue of $C, \lambda_{0}(k, \beta m g)$ goes to zero linearly, i.e. $\lambda_{\mathrm{C}}(0, \beta m g)=$ $\beta m g \nu, \beta m g \rightarrow 0, \nu$ finite.

We studied the sos model in two dimensions which replaces the interface by an array of columns of liquid ($\rho_{\mathrm{L}}=1$) of variable height h_{i}, in contact with vacuum ($\rho_{\mathrm{G}}=0$). The matrices H and C are readily computed (Stecki 1984) with the aid of the transfer matrix for non-zero external (pinning) potential $V\left(h_{i}\right)=V_{0}\left|h_{i}-h_{0}\right|^{\alpha}$ (van Leeuwen and

Hilhorst 1981). We studied the case $\alpha=2$ which corresponds to a gravitational potential and the case $\alpha=1$ which corresponds to constant shift, in the chemical potential, of opposite signs below and above the Gibbs dividing surface. For a strip $z_{\text {max }}=\infty, H$ (or C) is a matrix of dimensions $z_{\text {max }} \times z_{\text {max }}$ and its eigenvalues were computed for $z_{\max }=11-61$ and a range of external fields $2 \times 10^{-5} \leqslant \beta V_{0} \leqslant 0.3$ and temperatures $T / T_{\mathrm{c}}=$ $0.3,0.5,0.7$ where $2 J / k T_{c}=\ln (1+\sqrt{2})=0.88137$. The partition function of the system is

$$
\begin{gather*}
Z=\sum_{\left\{h_{i}\right\}} \exp \left(-2 \beta J \sum_{i}\left|h_{i+1}-h_{i}\right|\right) \exp \left(\beta V_{0} \sum_{i}\left|h_{i}-h_{0}\right|^{\alpha}\right), \quad \alpha=1,2 \\
0 \leqslant h_{1} \leqslant z_{\max } . \tag{2}
\end{gather*}
$$

The transfer matrix was diagonalised numerically, all its eigenvalues and eigenvectors were found and the Fourier sum $\tilde{H}(k)$ was hence computed. All eigenvalues of $\tilde{H}\left(k_{\perp}=0\right)$ matrix were then found. Figure 1 shows the $\log -\log$ plot of $\lambda_{\mathrm{C}}=\lambda_{\mathrm{H}}$ against $\beta_{c} V_{0}=0.88137 V_{0} / 2 J$. The plot of figure 1 was obtained by extrapolating each λ_{C} to larger and larger values of $z_{\text {max }}$ until it remained constant (except for the very small fields ($\beta_{\mathrm{c}} V_{0}<2 \times 10^{-4}$), to five digit accuracy). Such extrapolation becomes more and more difficult as the temperature is raised.

Figure 1. The log-log plot of the eigenvalue $\lambda_{c}\left(k_{+}=0\right)$ against external field $\beta_{c} V_{0}$ for temperatures $T / T_{c}=0.3(+), 0.5(O), 0.7(\Delta)$. Here $\alpha=2$ corresponds to the gravitational field, and $\alpha=1$ corresponds to constant shift in chemical potential.

The linear plots of figure 1 correspond to the following relation

$$
\begin{equation*}
\lambda_{\mathrm{C}}=A(T)\left(\beta_{\mathrm{c}} V_{0}\right)^{\delta} \tag{3}
\end{equation*}
$$

We found the amplitudes and the exponents by extrapolation illustrated by figure 2 . Each δ in figure 2 was obtained from a pair of successive points in figure 1. For the gravitational potential $\alpha=2, \delta=\frac{3}{4}$ in the limit of vanishing external field. The exponent $\delta=1$ postulated by Wertheim is recovered in the case $\alpha=1$. The amplitudes are: $A=3.50 \pm 0.01,3.50 \pm 0.06$ for $T / T_{\mathrm{c}}=0.3,0.5$, respectively, for $\alpha=2$ and $A=$ $18.7 \pm 0.1,11.25 \pm 0.1$ for $T / T_{\mathrm{c}}=0.3,0.5$, respectively, for $\alpha=1$. The amplitude could be determined for $T / T_{\mathrm{c}}=0.7$ if larger strips were investigated.

Figure 2. The exponents δ computed as successive ratios from figure 1 for $\alpha=2$ and $\alpha=1$. The numbers $49,55,61$ denote $z_{\text {max }}$ for $\alpha=1, T=0.5 T_{c}$. For $z_{\text {max }}=61$ the proper value of λ_{c} is not yet reached.

It is worth pointing out that the result (3) does not necessarily destroy the forms ($1 a$) and ($1 b$). Assuming and introducing the one-eigenvalue approximation to H, we find (now in continuous space, Evans 1979)

$$
\begin{aligned}
& \tilde{H}=x_{1}\left(z_{1}\right) A^{-1}\left(\beta_{\mathrm{c}} V_{0}\right)^{-\delta} x_{1}\left(z_{2}\right) \\
& \rho^{\prime}\left(z_{1}\right)=-A^{-1}\left(\beta_{\mathrm{c}} V_{0}\right)^{1-\delta} x_{1}\left(z_{1}\right) E \\
& \Delta \rho=A^{-1}\left(\beta_{\mathrm{c}} V_{0}\right)^{1-\delta} E^{2} \\
& E \equiv \int \mathrm{~d} z_{1} x_{1}\left(z_{1}\right)
\end{aligned}
$$

but

$$
\begin{equation*}
\tilde{H}=\rho^{\prime}\left(z_{1}\right) \rho^{\prime}\left(z_{2}\right)(\beta m g \Delta \rho)^{-1} \tag{1b}
\end{equation*}
$$

is recovered because δ cancels out. The k^{2} dependence in ($1 a$) is confirmed as expected but the coefficient approaches $\beta \gamma$ with difficulty.

One of us (JS) would like to thank Professor J S Rowlinson and Dr J R Henderson for useful discussions

References

Croxton C A 1980 Statistical Mechanics of the Liquid Surface (Chichester: Willey)
Davis H L and Scriven L E 1982 Adv. Chem. Phys. 49357
Dudowicz J and Stecki J 1980 Presented at the First Statistical Physics Seminar (Warsaw)
Evans R 1979 Adv. Phys. 28143
Rowlinson J S and Widom B 1982 Molecular Theory of Capillarity (Oxford: Clarendon)
Stecki J 1984 Proc. R. Soc. A in press
Van Leeuwen J M J and Hilhorst H J 1981 Physica 107A 319
Wertheim M S 1976 J. Chem. Phys. 652377

